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Synopsis 

In this investigation, a numerical model was developed to predict the temperature distri- 
bution in a fiber during melt spinning. This model uses the implicit Crank-Nicolson method 
to solve the governing differential equation for the problem. The model was applied to a series 
of numerical experiments on a liquid crystalline fiber which is melt-spun. These simulations 
used typical sets of operating conditions to determine the effect of various operating parameters 
on the predicted radius profile, spinline tension, and temperature distribution. The effects of 
spinneret capillary diameter, m a s  flow rate, ambient air temperature, spinning temperature, 
and elongational viscosity were investigated. The results of the various runs showed that 
ambient air temperature and m a s  flow rate had a significant effect on the predicted radius 
profile, spinline tension, and temperature distribution. The spinning temperature was a n  
important parameter, but its only significant effect was on the spinline tension. Spinneret 
capillary diameter and elongational viscosity had little effect on the predicted results. 

INTRODUCTION 
Melt spinning of fibers is a fundamental process in the glass and synthetic 

fiber industries. This process involves the continuous drawing of liquid 
filaments to form fibers. Figure 1 shows a schematic diagram of the melt 
spinning process. Molten glass, plastic, or liquid crystalline material is 
extruded through the spinneret into ambient air that is below the solidi- 
fication temperature. In some industrial melt spinning operations, this 
quenching process is enhanced by blowing the ambient air at right angles 
to the threadline. This cooling along the spinning path solidifies the molten 
jet into a solid filament. An area drawdown is generally induced in the 
melt zone by winding the solidified fiber on a takeup roll at a higher speed 
than the mean extrusion velocity. Typically, the as-spun filament is sub- 
jected to additional processing for property development. 

Heat transfer from the molten fiber to the surrounding medium is an 
important factor in melt spinning. This factor determines the temperature 
profile in the melt zone, which in turn affects the stress distribution in the 
as-spun fiber at the point of solidification. In glass and liquid crystalline 
fibers this residual stress distribution can significantly affect such ultimate 
physical properties of the fiber as the solid modulus and the extension-to- 
break ratio. 
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Because of the importance of the temperature and stress profiles, a pro- 
cess model is useful for predicting spinline behavior and for investigating 
the effect of changes in operating conditions (e.g., spinning temperature, 
mass flow rate, spinneret capillary diameter, etc.) on the properties of the 
as-spun filament. A number of mathematical models of the melt spinning 
process have been reported. Denn' gives an extensive review of these models. 
All but two of the models assume that the fiber temperature varies only 
with axial distance. That is, they assume there is no radial temperature 
distribution. The two exceptions are reported by Andrews2 and Matsuo and 
K a ~ e . ~  Andrews reported a simplified analytical solution for the tempera- 
ture distribution within the fiber assuming the radius profile is known, and 
the temperature profile is axisymmetrical. 

Matsuo and Kase extended their earlier axial temperature m ~ d e l ~ . ~  to 
include both radial and angular variation in the temperature distribution. 
The radius profile of the fiber is required for this model. Matsuo and Kase 
estimated this profile by assuming that the theoretically predicted filament 
radius profile is independent of the radial and angular temperature dis- 
tribution. With this assumption, the radius profile was estimated by solving 
the coupled equations of continuity, motion, and energy presented in their 
previous ~ o r k ~ , ~ :  

Molten,Glass 

Temperature: T(r.2) 

Tension: F 
Velocity: V,(zt 

Fig. 1. Schematic diagram of the melt spinning process. 
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dT ~ ( T A ) O . ~  h (T - TJ -- _ -  
dz WCP 

- -- F p  A dA 
dz WP 
-- 

The heat transfer coefficient h in eq. (1 )  was given by Kase and Matsuo4 
by the following equation: 

0.334 

h = 0 . 2 1 k o ( ~ ~ [  ( ~ A ) ~ . ~ p v ,  2w ] ( 1  + C) (3) 

where C = a corrective coefficient which accounts for the effect of transverse 
air velocity (C = 0 for air flow parallel to the threadline and C = 1 for 
perpendicular air flow). Matsuo and Kase3 solved the governing differential 
equation in their model by a modified form of the finite difference method. 
Half of a circular filament cross section, having a dimensionless radius of 
unity, was partitioned into 81 arbitrary segments. Each of these segments 
was assumed to have a uniform temperature. A difference equation was 
then solved for each segment to step forward incrementally down the fiber. 

The purpose of this investigation was to develop a numerical model to 
estimate the axial and radial temperature distribution in the threadline 
during melt spinning. The model developed in this investigation uses a 
more standard numerical method than that of Matsuo and Kase, so that 
it should be more accurate. The model was then applied to a commercially 
melt-spun liquid crystalline material which is cooled by air flow parallel 
to the threadline. The results allowed the determination of the effects of 
the various operating parameters on the resulting temperature profiles. 

DERIVATION OF GOVERNING EQUATION 

Assuming (a) steady-state spinning, (b) constant physical properties p ,  C, 
and k, (c) negligible viscous heat dissipation, (d) axisymmetrical flow, (e) 
axisymmetrical temperature distribution, and (0 negligible axial heat con- 
duction, the equations of continuity and energy6 for the melt spinning sys- 
tem shown in Figure 1 can be written as 

- l a  - (ru,) t- - a (u,) = 0 
r ar az 

(4) 

1 a aT 
pCp u r - +  u,- k --r-  "aJ = [ r a r  arJ 1 ",T 

Assuming that the product (ruJ is a function of r only, and u, is a function 
of z only, eq. (4) can be integrated to give 

r d  
2 dz ") 

u = ---( 
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The total mass flow rate W is constant and is given by the equation 

W = ~ A v ,  = PTR’V, (7) 

Substituting eqs. (6) and (7) into eq. (8, the governing equation of energy 
reduces to 

(8) 

Equation (8) is the equation of energy governing the temperature distri- 
bution in a melt spinning fiber. The solution of this equation requires the 
availability of the threadline radius as a function of axial distance below 
the spinneret. This profile can be estimated by making the same assumption 
as Matsuo and Kase3 in their model. That is, the radius profile can be 
calculated by assuming that the theoretically predicted filament radius 
profile is independent of the radial temperature distribution. With this 
assumption, the radius profile can be approximated by solving the coupled 
ordinary differential equations (1) and (2). 

Equation (8) can be simplified by expressing it in terms of dimensionless 
variables. This makes the solution mathematically more general and, as 
will be seen, numerically easier to solve. The dimensionless radial and axial 
coordinates, respectively, are defined by 

The dimensionless radius defined in eq. (9) varies from 0 to 1 at any given 
axial position. By reducing the governing equation with this dimensionless 
variable, the numerical solution of the resulting equation is simplified, since 
the equation is solved in an even, regular domain. Note that the dimen- 
sionless axial coordinate defined in eq. (10) is essentially a pseudo-time 
variable and can be treated as such in the numerical solution of the final 
equation. The temperature can be expressed in terms of a dimensionless 
variable by 

The functional dependence of the dependent variable T is given by T = 
T(r,z). Since z is not a function of tj, 
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Substituting for (ar/a() by eq. (9), we obtain 

aT aT 
a( ar 
- = -(R) 

Differentiating with respect to 4, we obtain 

-+) a2T a aT 
a t 2  a 4  at 

(13) 

Also, since T is a function of r and z, we find that 

aT aTar aTaz 
at; ar at ;  az at; + - -  ---- - 

Substituting for (arlat;), (az/at), and (aT/ar) by eqs. (9), (101, and (131, 
respectively, we obtain 

aT ( d R a T  aTWC, 
at; R dt; a( az 7rk 

+-- _ - _ - -  - (15) 

Substituting for (aT/az), (aT/ar), and (a2TTlar2) in eq. (8) by eqs. (13), (141, 
and (15), respectively, and substituting for the temperature T in terms of 
the dimensionless variable 8, as given in eq. 111, 

(16) 
--- dRa0 + - = - + [ - -  a0 a29 ( dR 1 j a0 
R dt; a( at aE2 R dt + i  a4 

or 

This is the final form of the governing differential equation for the nu- 
merical model. Note that the radial convection term cancels with one of 
the radial conduction terms. 

BOUNDARY CONDITIONS 
The following boundary conditions were assumed for the solution of eq. 

1. The temperature of the melt at the spinneret face is constant and is 
(17): 
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equal to the spinning temperature. Expressing this mathematically in terms 
of the dimensionless variables, we obtain 

2. The radial temperature gradient is zero at the center of the filament. 
That is, 

aT - = 0  a t r = O  
ar 

or, in dimensionless terms, 

a - O(O,<) = 0.0 
a k  (19) 

3. Heat loss from the fiber surface is by convection. This is expressed 
mathematically by 

aT h 
ar k 

-- = -(T - TJ at r = R 

or, in terms of dimensionless variables, 

(20) 

The expression for the heat transfer coefficient h given by Kase and Matsuo4 
in eq. (3) was used in this model. Note that the radius profile of the fiber 
is required in applying this boundary condition. 

NUMERICAL SOLUTION TECHNIQUE 
As stated previously, the radius profile of the fiber is required to solve 

eq. (17). The physical shape of the fiber was estimated in this investigation 
by solving eqs. (1) and (2) for the radius profile by a simultaneous fourth- 
order Runge-Kutta technique. This radius profile was then used in a finite 
difference solution of eq. (17). The implicit Crank-Nicolson method7 was 
applied to solve this equation. This is a standard numerical technique, and 
so it should give a more accurate solution than that used by Matsuo and 
K a ~ e . ~  

The finite difference grid used to model a melt spinning-fiber covered 
the domain 0 I 6 I 1 and < 2 0. At any given axial position 6, there are 
L radial grid points with i = 1 being at the center of the fiber and i = L 
being at the surface. Subscript (n) represents known values of the dependent 
variable at a given axial (or time) position, and subscript (n + 1) denotes 
unknown values at  the next axial position. The finite difference equations 
presented below are then solved at each axial position to step forward 
incrementally down the fiber. An error analysis to determine the magnitude 
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of the truncation error in the finite difference analogs indicated that step 
sizes of A4 = 0.025 and AS = 0.001 were sufficient to give negligible error. 

Recognizing that 5 is essentially a pseudo-time variable, boundary con- 
dition (1) can be treated as an initial condition. Thus, for all radial grid 
points i, 

ein=l = 1.0 (21) 

The finite difference equation for the interior grid points is given by 

where 

For the center grid point (i = l), the finite difference equation is 

where 

The finite difference equation for the surface grid point (i = L )  is 
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RESULTS AND DISCUSSION 
A series of numerical experiments was devised to study the predicted 

radius and temperature profiles for typical sets of operating conditions and 
to determine what effect various operating parameters have on these pro- 
files. Table I shows the required input data for these runs. Run no. 1 shows 
the base case used in the analysis. The input data for this run are for 
“normal” operating conditions. From this base case, the effects of spinneret 
capillary diameter (runs 2 and 31, mass flow rate (runs 4,5, and 6), ambient 
air temperature (runs 7 and 81, spinning temperature (runs 9 and lo), and 
elongational viscosity (runs 11 and 12) were investigated. 

Base Case 

Figure 2 shows the predicted filament radius profile for run no. 1. The 
indicated solidification point was taken as the axial position where the 
temperature of the center of the fiber reaches a value at or below the glass 
transition temperature. Note that, although the total distance required for 
the fiber to reach the solidification point is 0.0359 m, the drawdown is 
essentially 99% complete at an axial distance of only 0.00684 m. Thus, the 
drawdown region is small for this material. 

Figure 3 displays the radial temperature distribution in the fiber at sev- 
eral axial positions. The initial temperature at z = 0.0 m (i.e., at the spin- 
neret face) is the spinning temperature. The temperature across the fiber 
then decreases as shown as the numerical solution steps forward incre- 
mentally down the fiber. Note that the parameter plotted as the abscissa 
of this graph is the dimensionless radial coordinate defined in eq, (9). This 
explains the similar shape of the different curves. Plotting the fiber tem- 
perature as a function of 4 instead of r tends to dampen the steeper gra- 
dien ts . 

Figure 4 shows the center-line surface temperatures of the fiber for run 
no. 1. At a given axial position, the vertical distance between these two 
curves represents the radial temperature difference across the fiber. For 
this base case, the maximum value of the radial temperature difference is 
10.106 K. This maximum occurs at an axial distance of 0.00702 m. The 
radial temperature difference at  the solidification point is 4.776 K. 

Figures 5 and 6 show isotherms across the fiber near the spinneret face 
and near the point of maximum radial temperature difference, respectively. 
Note the steep rate of radius draw-down in Figure 5. The isotherms near 
the surface follow the radius profile closely in this initial section. The 
isotherms become flatter as the center of the fiber is approached. This 
indicates that convective heat loss is the dominant heat transfer mechanism 
near the spinneret. Heat conduction across the fiber becomes more impor- 
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tant as the axial distance increases. The rate of drawdown is substantially 
smaller in Figure 6 than in Figure 5. The isotherms are flatter and have 
similar shapes from one temperature to the next. This indicates that, by 
this point, the radial conduction effect is significant when compared with 
the convective heat loss effect. For both cases, the radial temperature gra- 
dient is steeper near the fiber surface. Thus, convective losses dominate 
near the surface. 
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Fig. 4. Axial temperature distribution for run no. 1. 

Effect of Various Parameters 
Table I1 shows the calculated spinning tension, maximum radial tem- 

perature difference, and the solidification point for the 12 runs given in 
Table I. Table I11 shows the effects of changing the various operating pa- 
rameters on the spinline tension and maximum radial temperature differ- 
ence. The spinline tension is increased from the base case by increasing 

---Fiber Rodnus 

- 6m.E K 
X a 

0 10 20 30 40 50 60 70 80 90 100 

RADIUS, (m) x lo6 
Isotherms near spinneret face for run no. 1. Fig. 5. 
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0 2 4 6 8 

RADIUS, (m) x lo6 
Fig. 6. Isotherms near Point of Maximum Radial Temperature Difference for run no. 1. 

the spinneret capillary diameter- and throughput and by decreasing the 
ambient air temperature, spinning temperature, and elongational viscosity. 
The biggest effect on the spinline tension results from changing the spinning 
temperature. A decrease in Tspin of only 7 K increases the tension by over 
91%. Ambient air temperature and throughput also have a significant effect 

TABLE I1 
Overall Results of Simulation Runs 

Maximum radial 
temperature Solidification 

Run Spinline tension difference point 
no. (N) x 104 (K) (m) x lo2 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

3.280 
3.063 
3.434 
2.602 
2.979 
3.534 
3.865 
2.650 
6.277 
1.588 
3.281 
2.968 

10.106 
10.146 
10.079 
8.072 
9.208 

10.862 
12.106 
7.988 
9.726 

10.540 
10.329 
9.927 

3.595 
3.576 
3.610 
2.218 
2.953 
4.191 
2.829 
5.257 
3.472 
3.739 
3.566 
3.621 
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on spinline tension. The maximum radial temperature difference is in- 
creased by increasing the throughput and spinning temperature and by 
decreasing the spinneret capillary diameter, ambient air temperature, and 
elongational viscosity. The parameters that affect the maximum radial 
temperature difference to the greatest extent are the throughput and am- 
bient air temperature. For example, a 9.2% increase in the ambient air 
temperature decreases the maximum radial temperature difference by 21 %. 
The axial distance required for solidification is increased by increasing all 
the parameters studied. 

Spinneret Capillary Diameter. Figures 7 and 8 show the effect of spin- 
neret capillary diameter (runs 1,2,  and 3) on the predicted filament radius 
profile and the radial temperature difference, respectively. The differences 
in the predicted fiber radii appear to be only a function of the differences 
in the starting points. The axial distance required for the fiber to reach 
essentially complete drawdown is approximately the same for the three 
capillary diameters studied. There is little difference in the radial temper- 
ature difference at any axial position. The maximum radial temperature 
difference is approximately 10.1 K and occurs at roughly the same axial 
position for all three cases. In addition, as shown in Tables I1 and 111, the 
solidification point is about the same and there is only a modest effect on 
the spinline tension. Thus, capillary diameter has little effect on spinline 
behavior. 
Mass Flow Rate. Figures 9 and 10 show the effect of throughput (runs 

1, 4, 5, and 6) on the radius profile and the radial temperature difference 
of the fiber, respectively. Throughput has a significant effect on both of 
these results. For lower throughputs, the fiber necks down faster and reach- 
es its final radius sooner than for higher throughputs. Also, the maximum 
radial temperature difference is lower for smaller throughputs. The value 
of this maximum ranges from 8.072 to 10.862 K for the four cases. The 
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Fig. 7. Effect of spinneret capillary diameter on fiber radius. Spinneret diameter (m): (A) 
0.000150; (0) 0.000200; (0) 0.000250. 
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Fig. 8. Effect of spinneret capillary diameter on the radial temperature difference. 
(m): (A) 0.000150; (0) 0.000200; (0) 0.000250. 

D s p i n  

axial position of the maximum radial temperature difference is shifted 
further from the spinneret with increasing mass flow rate. The solidification 
point increases significantly with increasing throughput, and there is a 
pronounced effect of throughput on spinline tension. Thus, mass flow rate 
has a significant effect on fiber characteristics. 

Ambient Air Temperature. There is little effect of ambient air tem- 
perature (runs 1,7, and 8) on the radius profile. However, at lower ambient 
air temperatures, the fiber necks down faster and reaches its final radius 
sooner than for higher air temperatures. Figure 11 shows the effect of 
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Fig. 9. 
(0) 1.667. 

Effect of throughput on fiber radius. W( x kg/s): (A) 0.667; (El) 1.ooO; (0) 1.333; 
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AXIAL DISTANCE, (m) x lo2 

Fig. 10. Effect of throughput on the radial temperature difference. W (X  kg/s): (a) 
0.667; (m) 1.o00, (0) 1.333; (0) 1.666. 

ambient air temperature on the radial temperature difference. The maxi- 
mum radial temperature difference increases appreciably with decreasing 
air temperatures. This maximum ranges from 7.988 to 12.106 K for ambient 
air temperatures of 473.15 to 393.15 K, respectively. As shown in Table 111, 
there is a significant effect of ambient air temperature on spinline tension. 

0 I 2 3 4 5 6 

AXIAL DISTANCE, (m) x to2 
Fig. 11. Effect of ambient air temperature on the radial temperature difference. T, (K): 

(0) 393.15; (0) 433.15; (OM73.15. 
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Thus, ambient air temperature is an important parameter affecting spinline 
behavior. 

Spinning Temperature. Figure 12 illustrates the effect of spinning tem- 
perature (runs 1, 9, and 10) on the radial temperature difference. There is 
essentially no difference in the filament radius profile for the three cases 
studied. There is little difference in the radial temperature difference for 
these runs. The maximum radial temperature difference only ranges from 
9.726 to 10.540 K for the three spinning temperatures. The effect of spinning 
temperature on the spinline tension is significant, however. This was dis- 
cussed previously. 

Elongational Viscosity. Figures 13 and 14 show the effect of elonga- 
tional viscosity (runs 1, 11, and 12) on the fiber radius and radial temper- 
ature difference, respectively. As can be seen from these figures and Tables 
I1 and 111, the elongational viscosity does not have a pronounced effect on 
any of the results shown. The biggest effect is seen in the radius profile 
and spinline tension. For lower viscosities, the fiber necks down faster and 
the spinline tension is greater. However, these effects are not significant 
when compared with the effects of some of the other parameters. 

Comparison of Effects of Various Parameters 
Based on the results presented in this section, mass flow rate and ambient 

air temperature have the biggest effect on the filament radius profile and 
the radial temperature distribution (and, thus, the residual stress in the 
fiber) of the variables studied. These parameters also have a significant 
influence on the spinline tension. For example, a 50% decrease in the mass 
flow rate causes a 20.1% decrease in the maximum radial temperature 
difference and a 20.7% decrease in the spinline tension. A 9.2% increase 

1 I 

~~~~~ 

0 I 2 3 4 

AXIAL DISTANCE, (m)x  lo2 
Fig. 12. Effect of spinning temperature on the radial temperature difference. Tspin (K): (A) 

623.15; (0) 630.15; (0) 638.15. 
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Fig. 13. Effect of elongational viscosity on fiber radius. 0: (A) 5.265 x 10-29 e'@157/T'; (0) 

3.537 X lo-% e(37262/T1; (0) 3.756 x e(32889/T'. 

in the ambient air temperature produces a 21.0% decrease in the maximum 
radial temperature difference and a 19.2% decrease in the spinline tension. 
The spinning temperature is also important, but its only significant effect 
is seen in the spinline tension. A 1.1% decrease in the spinning temperature 
increases the spinline tension by 91.4% but only causes a 3.8% decrease 
in the maximum radial temperature difference. Thus, the spinning tem- 
perature strongly influences stresses during spinning, while throughput 
and ambient air temperature have more of an effect on residual stresses. 
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The spinneret capillary diameter and elongational viscosity have only a 
slight effect on spinline behavior. For example, a 25% increase in the cap- 
illary diameter only causes a 4.7% increase in the spinline tension and a 
0.27% decrease in the maximum radial temperature difference. A 15.6% 
decrease in the elongational viscosity produces a 0.03% increase in the 
spinline tension and a 2.2% increase in the maximum radial temperature 
difference. Thus, spinneret capillary diameter and elongational viscosity 
have only a minimal effect on the residual stress in the fiber. The small 
effect of elongational viscosity indicates that the momentum equation is 
less important than the energy equation in modeling this system. The cap- 
illary diameter was expected to have a bigger influence on the filament 
radius profile, the radial temperature difference, and, thus, the residual 
stress in the fiber. Apparently, the high drawdown rate for the material 
studied tends to dampen the effect of capillary diameter. 

Validity of Model 
There is no direct means of experimental verification of the model for 

the temperature distribution in the fiber. However, based on the results of 
this investigation, it is believed that the model can give reasonable quan- 
titative estimates of the temperature distribution in a melt spinning fiber. 
The model should prove especially useful for qualitatively studying trends 
in the predicted spinline behavior induced by changes in the physical prop- 
erties of the material being spun or in the actual melt spinning conditions. 

SUMMARY 
In this investigation, an attempt was made to numerically predict the 

temperature distribution within a melt spinning fiber. The implicit Crank- 
Nicolson method was used in the numerical solution of the governing dif- 
ferential equation. The model was applied to a series of numerical exper- 
iments to study the effect of various operating parameters on the resulting 
profiles. The results showed that the numerical model can be used to in- 
dicate key variables in the melt spinning process. 

For the material studied, mass flow rate and ambient air temperature 
are key operating variables in determining the radial temperature distri- 
bution and, thus, the residual stresses within the fiber. Spinning temper- 
ature greatly influences the spinline tension. Spinneret capillary diameter 
and elongational viscosity have little effect on either radial temperature 
differences and residual stresses or on spinline tension. 

APPENDIX NOMENCLATURE 
A 
CP 
F axial tension (N) 
h 
k 
ko 
R(Z) 
T temperature (K) 
T, ambient temperature (K) 

cross-sectional area of the threadline (m2) 
isobaric heat capacity of the fiber (J/kg + K) 

average surface heat transfer coefficient of the filament (W/mZ . K) 
thermal conductivity of melt (W/m - K) 
thermal conductivity of air (W/m - K) 
filament radius at point z (m) 
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spinning temperature (K) 
radial velocity (m/s) 
axial velocity (m/s) 
total mass flow rate (kg/s) 
elongational viscosity (Pa . s)  
dimensionless axial coordinate 
dimensionless temperature 
kinematic viscosity of air (mZ/s) 
dimensionless radial coordinate 
density (kg/m3) 
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