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Synopsis

In this investigation, a numerical model was developed to predict the temperature distri-
bution in a fiber during melt spinning. This model uses the implicit Crank-Nicolson method
to solve the governing differential equation for the problem. The model was applied to a series
of numerical experiments on a liquid crystalline fiber which is melt-spun. These simulations
used typical sets of operating conditions to determine the effect of various operating parameters
on the predicted radius profile, spinline tension, and temperature distribution. The effects of
spinneret capillary diameter, mass flow rate, ambient air temperature, spinning temperature,
and elongational viscosity were investigated. The results of the various runs showed that
ambient air temperature and mass flow rate had a significant effect on the predicted radius
profile, spinline tension, and temperature distribution. The spinning temperature was an
important parameter, but its only significant effect was on the spinline tension. Spinneret
capillary diameter and elongational viscosity had little effect on the predicted results.

INTRODUCTION

Melt spinning of fibers is a fundamental process in the glass and synthetic
fiber industries. This process involves the continuous drawing of liquid
filaments to form fibers. Figure 1 shows a schematic diagram of the melt
spinning process. Molten glass, plastic, or liquid crystalline material is
extruded through the spinneret into ambient air that is below the solidi-
fication temperature. In some industrial melt spinning operations, this
quenching process is enhanced by blowing the ambient air at right angles
to the threadline. This cooling along the spinning path solidifies the molten
jet into a solid filament. An area drawdown is generally induced in the
melt zone by winding the solidified fiber on a takeup roll at a higher speed
than the mean extrusion velocity. Typically, the as-spun filament is sub-
jected to additional processing for property development.

Heat transfer from the molten fiber to the surrounding medium is an
important factor in melt spinning. This factor determines the temperature
profile in the melt zone, which in turn affects the stress distribution in the
as-spun fiber at the point of solidification. In glass and liquid crystalline
fibers this residual stress distribution can significantly affect such ultimate
physical properties of the fiber as the solid modulus and the extension-to-
break ratio.
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Because of the importance of the temperature and stress profiles, a pro-
cess model is useful for predicting spinline behavior and for investigating
the effect of changes in operating conditions (e.g., spinning temperature,
mass flow rate, spinneret capillary diameter, etc.) on the properties of the
as-spun filament. A number of mathematical models of the melt spinning
process have been reported. Denn! gives an extensive review of these models.
All but two of the models assume that the fiber temperature varies only
with axial distance. That is, they assume there is no radial temperature
distribution. The two exceptions are reported by Andrews? and Matsuo and
Kase.3 Andrews reported a simplified analytical solution for the tempera-
ture distribution within the fiber assuming the radius profile is known, and
the temperature profile is axisymmetrical.

Matsuo and Kase extended their earlier axial temperature model*? to
include both radial and angular variation in the temperature distribution.
The radius profile of the fiber is required for this model. Matsuo and Kase
estimated this profile by assuming that the theoretically predicted filament
radius profile is independent of the radial and angular temperature dis-
tribution. With this assumption, the radius profile was estimated by solving
the coupled equations of continuity, motion, and energy presented in their
previous work*5:
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Fig. 1. Schematic diagram of the melt spinning process.
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The heat transfer coefficient A in eq. (1) was given by Kase and Matsuo*
by the following equation:

05 0.334
2w
h = 0.21k, (%) [m] a1+0 3)

where C = a corrective coefficient which accounts for the effect of transverse
air velocity (C = 0 for air flow parallel to the threadline and C = 1 for
perpendicular air flow). Matsuo and Kase® solved the governing differential
equation in their model by a modified form of the finite difference method.
Half of a circular filament cross section, having a dimensionless radius of
unity, was partitioned into 81 arbitrary segments. Each of these segments
was assumed to have a uniform temperature. A difference equation was
then solved for each segment to step forward incrementally down the fiber.
The purpose of this investigation was to develop a numerical model to
estimate the axial and radial temperature distribution in the threadline
during melt spinning. The model developed in this investigation uses a
more standard numerical method than that of Matsuo and Kase, so that
it should be more accurate. The model was then applied to a commercially
melt-spun liquid crystalline material which is cooled by air flow parallel
to the threadline. The results allowed the determination of the effects of
the various operating parameters on the resulting temperature profiles.

DERIVATION OF GOVERNING EQUATION

Assuming (a) steady-state spinning, (b) constant physical properties p, C,
and %, (c) negligible viscous heat dissipation, (d) axisymmetrical flow, (e)
axisymmetrical temperature distribution, and (f) negligible axial heat con-
duction, the equations of continuity and energy® for the melt spinning sys-
tem shown in Figure 1 can be written as

13 uy+ 2wy =0 @
ror 0z
oT oT ‘13 oT

pCp[v,a—r- + v, —a—;:l = kl:;;_r}—r:l 5B)

Assuming that the product (rv,) is a function of r only, and v, is a function
of z only, eq. (4) can be integrated to give

rd
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The total mass flow rate W is constant and is given by the equation
W = pAv, = pmR?y, (7

Substituting egs. (6) and (7) into eq. (5), the governing equation of energy
reduces to

8)
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Equation (8) is the equation of energy governing the temperature distri-
bution in a melt spinning fiber. The solution of this equation requires the
availability of the threadline radius as a function of axial distance below
the spinneret. This profile can be estimated by making the same assumption
as Matsuo and Kase® in their model. That is, the radius profile can be
calculated by assuming that the theoretically predicted filament radius
profile is independent of the radial temperature distribution. With this
assumption, the radius profile can be approximated by solving the coupled
ordinary differential equations (1) and (2).

Equation (8) can be simplified by expressing it in terms of dimensionless
variables. This makes the solution mathematically more general and, as
will be seen, numerically easier to solve. The dimensionless radial and axial
coordinates, respectively, are defined by

_ r
" R(2)

_ kz _ wkz
- pC,v.R? a wC,

9

3

(10)
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The dimensionless radius defined in eq. (9) varies from 0 to 1 at any given
axial position. By reducing the governing equation with this dimensionless
variable, the numerical solution of the resulting equation is simplified, since
the equation is solved in an even, regular domain. Note that the dimen-
sionless axial coordinate defined in eq. (10) is essentially a pseudo-time
variable and can be treated as such in the numerical solution of the final
equation. The temperature can be expressed in terms of a dimensionless
variable by

T T,

0= —— 2
Tspin - Ta

1)

The functional dependence of the dependent variable T is given by 7' =
T(r,z). Since z is not a function of £,

Y] = —a—;g (12)
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Substituting for (ar/2£) by eq. (9), we obtain

T = ﬂv(R) 13
Y3 ar

Differentiating with respect to £, we obtain
T _ i(ﬂ")
a8z 3kl
3 oT
- a(r/R)(R a_r)

2
_g (14)

ar?
Also, since T is a function of r and 2z, we find that
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Substituting for (ar/sf), (3z/8f), and (a7/ar) by egs. (9), (10), and (13),
respectively, we obtain
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Substituting for (3 7"/3z), (27/ar), and (327T/ar2 in eq. (8) by egs. (18}, (14),
and (15), respectively, and substituting for the temperature 7' in terms of
the dimensionless variable 0, as given in eq. 11),

£dRa0 o0 % [£dR 1]4 16
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This is the final form of the governing differential equation for the nu-
merical model. Note that the radial convection term cancels with one of
the radial conduction terms.

BOUNDARY CONDITIONS

The following boundary conditions were assumed for the solution of eq.

amn:
1. The temperature of the melt at the spinneret face is constant and is
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equal to the spinning temperature. Expressing this mathematically in terms
of the dimensionless variables, we obtain

0,0 = 1.0 (18)

2. The radial temperature gradient is zero at the center of the filament.
That is,

f =0atr=20
or
or, in dimensionless terms,
a—‘“’g 8(0,0) = 0.0 (19)

3. Heat loss from the fiber surface is by convection. This is expressed
mathematically by g

(T'—-T,) atr=R

oT_h
or k

or, in terms of dimensionless variables,

] hR
52 01,0 = —(—,;)0 (20)

The expression for the heat transfer coefficient A given by Kase and Matsuo*
in eq. (3) was used in this model. Note that the radius profile of the fiber
is required in applying this boundary condition.

NUMERICAL SOLUTION TECHNIQUE

As stated previously, the radius profile of the fiber is required to solve
eq. (17). The physical shape of the fiber was estimated in this investigation
by solving egs. (1) and (2) for the radius profile by a simultaneous fourth-
order Runge-Kutta technique. This radius profile was then used in a finite
difference solution of eq. (17). The implicit Crank-Nicolson method” was
applied to solve this equation. This is a standard numerical technique, and
so it should give a more accurate solution than that used by Matsuo and
Kase.?

The finite difference grid used to model a melt spinning -fiber covered
the domain 0 £ £ < 1 and { > 0. At any given axial position {, there are
L radial grid points with i = 1 being at the center of the fiber and i = L
being at the surface. Subscript (n) represents known values of the dependent
variable at a given axial (or time) position, and subscript (n + 1) denotes
unknown values at the next axial position. The finite difference equations
presented below are then solved at each axial position to step forward
incrementally down the fiber. An error analysis to determine the magnitude
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of the truncation error in the finite difference analogs indicated that step
sizes of Af = 0.025 and A{ = 0.001 were sufficient to give negligible error.

Recognizing that £ is essentially a pseudo-time variable, boundary con-
dition (1) can be treated as an initial condition. Thus, for all radial grid
points i,

0,,.,=10 (21)

The finite difference equation for the interior grid points is given by

Ab, 1,1+ Bbinir+ COirnyr = D, (22)
where .
A [i _ g]
B, = [_———2(i — Az)(Ag)z — 2 — 1)]
a=i-1

3 2i — 1XAE)? 1

For the center grid point (i = 1), the finite difference equation is

B0, + Ciby,11 = Dy (23)
where
i 2
P B
L (AD
C, = (2]
[ e
Dl - -2 - (AC):I Ol,n + [_2] 92,71

The finite difference equation for the surface grid point (i = L) is
ALOL—I,YI+1 + BLoL,,l+1 = DL (24)
where

AL =1[2]

e
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RESULTS AND DISCUSSION

A series of numerical experiments was devised to study the predicted
radius and temperature profiles for typical sets of operating conditions and
to determine what effect various operating parameters have on these pro-
files. Table I shows the required input data for these runs. Run no. 1 shows
the base case used in the analysis. The input data for this run are for
“normal” operating conditions. From this base case, the effects of spinneret
capillary diameter (runs 2 and 3), mass flow rate (runs 4, 5, and 6), ambient
air temperature (runs 7 and 8), spinning temperature (runs 9 and 10), and
elongational viscosity (runs 11 and 12) were investigated.

Base Case

Figure 2 shows the predicted filament radius profile for run no. 1. The
indicated solidification point was taken as the axial position where the
temperature of the center of the fiber reaches a value at or below the glass
transition temperature. Note that, although the total distance required for
the fiber to reach the solidification point is 0.0359 m, the drawdown is
essentially 99% complete at an axial distance of only 0.00684 m. Thus, the
drawdown region is small for this material.

Figure 3 displays the radial temperature distribution in the fiber at sev-
eral axial positions. The initial temperature at z = 0.0 m (i.e., at the spin-
neret face) is the spinning temperature. The temperature across the fiber
then decreases as shown as the numerical solution steps forward incre-
mentally down the fiber. Note that the parameter plotted as the abscissa
of this graph is the dimensionless radial coordinate defined in eq. (9). This
explains the similar shape of the different curves. Plotting the fiber tem-
perature as a function of £ instead of r tends to dampen the steeper gra-
dients.

Figure 4 shows the center-line surface temperatures of the fiber for run
no. 1. At a given axial position, the vertical distance between these two
curves represents the radial temperature difference across the fiber. For
this base case, the maximum value of the radial temperature difference is
10.106 K. This maximum occurs at an axial distance of 0.00702 m. The
radial temperature difference at the solidification point is 4.776 K.

Figures 5 and 6 show isotherms across the fiber near the spinneret face
and near the point of maximum radial temperature difference, respectively.
Note the steep rate of radius draw-down in Figure 5. The isotherms near
the surface follow the radius profile closely in this initial section. The
isotherms become flatter as the center of the fiber is approached. This
indicates that convective heat loss is the dominant heat transfer mechanism
near the spinneret. Heat conduction across the fiber becomes more impor-
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Fig. 2. Radius profile of fiber for run no. 1.

tant as the axial distance increases. The rate of drawdown is substantially
smaller in Figure 6 than in Figure 5. The isotherms are flatter and have
similar shapes from one temperature to the next. This indicates that, by
this point, the radial conduction effect is significant when compared with
the convective heat loss effect. For both cases, the radial temperature gra-
dient is steeper near the fiber surface. Thus, convective losses dominate

near the surface.

FIBER TEMPERATURE, (K)

Fig. 3. Température distribution at several axial positions for run no. 1.
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Fig. 4. Axial temperature distribution for run no.

I

Surtace Temperature

Center Temperature

i
2 3

AXIAL DISTANCE, (m)xl0°

Effect of Various Parameters
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Table II shows the calculated spinning tension, maximum radial tem-
perature difference, and the solidification point for the 12 runs given in
Table I. Table III shows the effects of changing the various operating pa-
rameters on the spinline tension and maximum radial temperature differ-
ence. The spinline tension is increased from the base case by increasing
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— ——Fiber Radius

RADIUS, (m)x 10°
Fig. 5. Isotherms near spinneret face for run no. 1.



3632 HUTCHENSON, EDIE, AND RIGGS

0.90

0.85

o
@
o

AXIAL DISTANCE FROM SPINNERET, (m) x 162
o
@
(o]

0.55

0.50

0 2 4 3 8
RADIUS, (m) x 108
Fig. 6. Isotherms near Point of Maximum Radial Temperature Difference for run no. 1.

the spinneret capillary diameter-and throughput and by decreasing the
ambient air temperature, spinning temperature, and elongational viscosity.
The biggest effect on the spinline tension results from changing the spinning
temperature. A decrease in Ty, of only 7 K increases the tension by over
91%. Ambient air temperature and throughput also have a significant effect

TABLE I
Overall Results of Simulation Runs

Maximum radial

temperature Solidification

Run Spinline tension difference point
no. N) x 10¢ (K) (m) X 102

1 3.280 10.106 3.595

2 3.063 10.146 3.576

3 3.434 10.079 3.610

4 2.602 8.072 2.218

5 2.979 9.208 2.953

6 3.534 10.862 4.191

7 3.865 12.106 2.829

8 2.650 7.988 5.257

9 6.277 9.726 3472
10 1.588 10.540 3.739
11 3.281 10.329 3.566
12 2968 9.927 3.621
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on spinline tension. The maximum radial temperature difference is in-
creased by increasing the throughput and spinning temperature and by
decreasing the spinneret capillary diameter, ambient air temperature, and
elongational viscosity. The parameters that affect the maximum radial
temperature difference to the greatest extent are the throughput and am-
bient air temperature. For example, a 9.2% increase in the ambient air
temperature decreases the maximum radial temperature difference by 21%.
The axial distance required for solidification is increased by increasing all
the parameters studied.

Spinneret Capillary Diameter. Figures 7 and 8 show the effect of spin-
neret capillary diameter (runs 1, 2, and 3) on the predicted filament radius
profile and the radial temperature difference, respectively. The differences
in the predicted fiber radii appear to be only a function of the differences
in the starting points. The axial distance required for the fiber to reach
essentially complete drawdown is approximately the same for the three
capillary diameters studied. There is little difference in the radial temper-
ature difference at any axial position. The maximum radial temperature
difference is approximately 10.1 K and occurs at roughly the same axial
position for all three cases. In addition, as shown in Tables II and III, the
solidification point is abeut the same and there is only a modest effect on
the spinline tension. Thus, capillary diameter has little effect on spinline
behavior.

Mass Flow Rate. Figures 9 and 10 show the effect of throughput (runs
1, 4, 5, and 6) on the radius profile and the radial temperature difference
of the fiber, respectively. Throughput has a significant effect on both of
these results. For lower throughputs, the fiber necks down faster and reach-
es its final radius sooner than for higher throughputs. Also, the maximum
radial temperature difference is lower for smaller throughputs. The value
of this maximum ranges from 8.072 to 10.862 K for the four cases. The

T T T T T

120F

® @ o
o o S
T

FIBER RADIUS (m)x 10®
H
O

20

i n 1 e 1
0 02 [eX) [eX3 08 10 12
AXIAL DISTANCE (m)x 10%

Fig. 7. Effect of spinneret capillary diameter on fiber radius. Spinneret diameter (m): (A)
0.000150; (©) 0.000200; (&) 0.000250.
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Fig. 8. Effect of spinneret capillary diameter on the radial temperature difference. Dy,
(m): (A) 0.000150; (©) 0.000200; (&) 0.000250.

[+

axial position of the maximum radial temperature difference is shifted
further from the spinneret with increasing mass flow rate. The solidification
point increases significantly with increasing throughput, and there is a
pronounced effect of throughput on spinline tension. Thus, mass flow rate
has a significant effect on fiber characteristics.

Ambient Air Temperature. There is little effect of ambient air tem-
perature (runs 1, 7, and 8) on the radius profile. However, at lower ambient
air temperatures, the fiber necks down faster and reaches its final radius
sooner than for higher air temperatures. Figure 11 shows the effect of

120

00|

L2 @
[=] O

FIBER RADIUS (m) x 10°
-y
(]

20

[¢] O.‘Z QJ4 0.‘6 Q‘B l.‘O 12
AXIAL DISTANCE (m) x I0°

Fig.9. Effect of throughput on fiber radius. W(x 10-¢ kg/s): (A) 0.667; ([']) 1.000; (®) 1.333;
(©) 1.667.
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Fig. 10. Effect of throughput on the radial temperature difference. W (x10-8 kg/s): (A)
0.667; (1) 1.000; (O) 1.333; (©) 1.666.

ambient air temperature on the radial temperature difference. The maxi-
mum radial temperature difference increases appreciably with decreasing
air temperatures. This maximum ranges from 7.988 to 12.106 K for ambient
air temperatures of 473.15 to 393.15 K, respectively. As shown in Table III,
there is a significant effect of ambient air temperature on spinline tension.

EY

RADIAL TEMPERATURE DIFFERENCE, (K)
~N o
L

L L ] - A
[+] ! 2 3 4 5 6

AXIAL DISTANCE, (m) x 10%
Fig. 11. Effect of ambient air temperature on the radial temperature difference. T, (K):
(A) 393.15; (O) 433.15; (©)473.15.




MELT SPINNING OF FIBERS 3637

Thus, ambient air temperature is an important parameter affecting spinline
behavior.

Spinning Temperature. Figure 12 illustrates the effect of spinning tem-
perature (runs 1, 9, and 10) on the radial temperature difference. There is
essentially no difference in the filament radius profile for the three cases
studied. There is little difference in the radial temperature difference for
these runs. The maximum radial temperature difference only ranges from
9.726 to 10.540 K for the three spinning temperatures. The effect of spinning
temperature on the spinline tension is significant, however. This was dis-
cussed previously.

Elongational Viscosity. Figures 13 and 14 show the effect of elonga-
tional viscosity (runs 1, 11, and 12) on the fiber radius and radial temper-
ature difference, respectively. As can be seen from these figures and Tables
II and III, the elongational viscosity does not have a pronounced effect on
any of the results shown. The biggest effect is seen in the radius profile
and spinline tension. For lower viscosities, the fiber necks down faster and
the spinline tension is greater. However, these effects are not significant
when compared with the effects of some of the other parameters.

Comparison of Effects of Various Parameters

Based on the results presented in this section, mass flow rate and ambient
air temperature have the biggest effect on the filament radius profile and
the radial temperature distribution (and, thus, the residual stress in the
fiber) of the variables studied. These parameters also have a significant
influence on the spinline tension. For example, a 50% decrease in the mass
flow rate causes a 20.1% decrease in the maximum radial temperature
difference and a 20.7% decrease in the spinline tension. A 9.2% increase

RADIAL TEMPERATURE DIFFERENCE, (K)

| ] 1
o] | 2 3 4

AXIAL DISTANCE, (m)x10?

Fig. 12. Effect of spinning temperature on the radial temperature difference. T,,;, K): (A)
623.15; (©) 630.15; (©) 638.15.
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Fig. 13. Effect of elongational viscosity on fiber radius. 8: (A) 5.265 X 10~ ¢44157/D; (©)
3.537 X 10—24 e(37262/'l‘); (0) 3.756 X 10—21 8(32889/T).

in the ambient air temperature produces a 21.0% decrease in the maximum
radial temperature difference and a 19.2% decrease in the spinline tension.
The spinning temperature is also important, but its only significant effect
is seen in the spinline tension. A 1.1% decrease in the spinning temperature
increases the spinline tension by 91.4% but only causes a 3.8% decrease
in the maximum radial temperature difference. Thus, the spinning tem-
perature strongly influences stresses during spinning, while throughput
and ambient air temperature have more of an effect on residual stresses.

RADIAL TEMPERATURE DIFFERENCE, (K}

1 1 1
o ) 2 3 9

AXIAL DISTANCE, (m) x 10°

Fig. 14. Effect of elongational viscosity on the radial temperature difference. B8: (A) 5.265
X 10—29 e(“l57/'l‘); (O) 3537 X 10—24 el37262/'l'); (Q) 3756 X 10—21 e(BMlT).
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The spinneret capillary diameter and elongational viscosity have only a
slight effect on spinline behavior. For example, a 25% increase in the cap-
illary diameter only causes a 4.7% increase in the spinline tension and a
0.27% decrease in the maximum radial temperature difference. A 15.6%
decrease in the elongational viscosity produces a 0.03% increase in the
spinline tension and a 2.2% increase in the maximum radial temperature
difference. Thus, spinneret capillary diameter and elongational viscosity
have only a minimal effect on the residual stress in the fiber. The small
effect of elongational viscosity indicates that the momentum equation is
less important than the energy equation in modeling this system. The cap-
illary diameter was expected to have a bigger influence on the filament
radius profile, the radial temperature difference, and, thus, the residual
stress in the fiber. Apparently, the high drawdown rate for the material
studied tends to dampen the effect of capillary diameter.

Validity of Model

There is no direct means of experimental verification of the model for
the temperature distribution in the fiber. However, based on the results of
this investigation, it is believed that the model can give reasonable quan-
titative estimates of the temperature distribution in a melt spinning fiber.
The model should prove especially useful for qualitatively studying trends
in the predicted spinline behavior induced by changes in the physical prop-
erties of the material being spun or in the actual melt spinning conditions.

SUMMARY

In this investigation, an attempt was made to numerically predict the
temperature distribution within a melt spinning fiber. The implicit Crank-
Nicolson method was used in the numerical solution of the governing dif-
ferential equation. The model was applied to a series of numerical exper-
iments to study the effect of various operating parameters on the resulting
profiles. The results showed that the numerical model can be used to in-
dicate key variables in the melt spinning process.

For the material studied, mass flow rate and ambient air temperature
are key operating variables in determining the radial temperature distri-
bution and, thus, the residual stresses within the fiber. Spinning temper-
ature greatly influences the spinline tension. Spinneret capillary diameter
and elongational viscosity have little effect on either radial temperature
differences and residual stresses or on spinline tension.

APPENDIX: NOMENCLATURE

A cross-sectional area of the threadline (m?)

C, isobaric heat capacity of the fiber (J/kg - K)

F axial tension (N)

h average surface heat transfer coefficient of the filament (W/m? . K)
k thermal conductivity of melt (W/m - K)

ko thermal conductivity of air (W/m . K)

R(2) filament radius at point z (m)

T temperature (K)

T, ambient temperature (K)
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=~

spin spinning temperature (K)
radial velocity (m/s)

axial velocity (m/s)

total mass flow rate (kg/s)
elongational viscosity (Pa - s)
dimensionless axial coordinate
dimensionless temperature
kinematic viscosity of air (m?/s)
dimensionless radial coordinate
density (kg/m?)
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